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Multistate image restoration by transmission of bit-decomposed data
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We report on the restoration of gray-scale image when it is decomposed into a binary form before trans-
mission. We assume that a gray-scale image expressed by a@dsiofg spins is first decomposed into an
expression using Isinthinary) spins by means of the threshold division, namely, we prodGze 1) binary
Ising spins from a&Q-Ising spin by the functiorF(o; —m)=1 if the input datao; {0, ... Q—1} is o;=m
and 0 otherwise, whemm {1, . . ., Q- 1} is the threshold value. The effects of noise are different from the
case where the ra®-Ising values are sent. We investigate whether it is more effective to use the binary data
for transmission, or to send the ra@+Ising values. By using the mean-field model, we analyze the perfor-
mance of our method quantitatively. In order to investigate what kind of original picture is efficiently restored
by our method, the standard image in two dimensions is simulated by the mean-field annealing, and we
compare the performance of our method with that usingQHsing form. We show that our method is more
efficient than the one using th@-Ising form when the original picture has large parts in which the nearest-
neighboring pixels take close values.
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[. INTRODUCTION of a spin system described by the effective Hamiltonian in
the context of statistical mechanics. Another is the estimation
Statistical-mechanical approaches to the problems in inin which we regard the expectation value with respect to the
formation science are employed frequently, and it is nowmaximized marginal posterior probability at each site in ther-
known that such methods are very useful in various problemmal equilibrium as the original image and is called the maxi-
[1]. Among such problems, the image restoration problenmum posteriorimarginal(MPM) estimation. This estimation
has been investigated both theoretically and practicallys also called the finite-temperature restoration. Therefore,
[2—4]. We usually send and receive the information bythe MPM estimation includes the MAP estimation. Among
means of various networks. The information is the data othe two estimations, it was proposed by Marrogetral. [5]
document, sound, picture, and so on. However, it is generallyhat the MPM estimation gives better performance than the
impossible for a receiver to receive complete transmittedAP estimation. Nishimori and Won{g] proved this fact
data when a sender transmits something, because the data &eblack and white images using a rigorous inequality. With
transmitted through a noisy channel. If we restrict the type ofespect to the gray-scale image, the same has been shown by
data to that of the picture, the original image is affected byTanaka[7] from a different viewpoint.
some kind of noise when it is sent by a defective fax, a fickle Not only black and white images but also gray-scale im-
email, etc. When we receive such a corrupted image, weges are actively investigated by many people in the field of
have to convert it using some kind of filter to obtain the statistical mechanics. Restoration of gray-scale image using
original image. Basically, it is the image restoration problemchiral Potts spii9] may not be appropriate since chiral Potts
to estimate the original datéhe original imagg from the  spin cannot express the distance among different states.
received, corrupted datghe degraded imageWe may re- However,Q-Ising spin[8] may express the gray-scale level
gard the digital picture as a discrete spin system. For exat least. Restoration of gray-scale image us@sing spin
ample, a black and white image corresponds to an Ising spiwas first investigated by Inoue and Carluft0].
system by identifying the white color witt 1 and the black Inspired by their studies, we investigate the restoration of
with —1. Furthermore, the theory of image restoration isthe gray-scale image expressed by@résing spin when it is
constructed by considering that two axes of the planexthe decomposed into the Ising spin before transmission. In this
andy axis, correspond to two axes of time in the stochastianethod, the gray-scale image is decomposed into binary data
process. That is, the Markov process that the event occurs By means of the method of threshold division before it is
a specific time is affected by what happened at neighboringransmitted. Then the bit-decomposed data is transmitted
pixels at a one-time step before. through a noisy channel. Therefore, the effects of noise are
There are mainly two standard approaches to the imagdifferent from those in th&-Ising form. We show how well
restoration by means of the method of statistical mechanicshe original image is restored in our method in comparison to
One is called the maximura posteriori(MAP) estimation, the restoration using th@-Ising form.
in which the estimation of the original image is given by  This paper is organized as follows. In the next section, we
maximizing a posterior probability distribution. This estima- explain the general formulation of image restoration and the
tion will be seen to correspond to a search of the ground statmethod of threshold division. In Sec. lll, we analyze the
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static properties of image restoration in the infinite-range Since we may use the degraded image only and do not
model. In Sec. IV, we verify the result of the infinite-range know the other information of the original image, we intro-
model in realistic pictures by means of Monte Carlo simula-duced the model prioP,,({c}) to represena priori knowl-

tion. In Sec. V, standard image is restored by the method oédge on natural imagd®4({¢}) represented by Ed1). Fur-
mean-field annealing. The performance of restoration in outhermore, prior parameter8; and r,/7> to control the
method is compared with that using tielsing form. The  generation of original image and degraded image, respec-

final section is denoted to summary and discussions. tively, are unknown quantities. Accordingly, we have to use
the so-called hyperparametegss, andh instead of prior pa-
Il. GENERAL FORMULATION rametersB, and 7o/ 2. Then, controlling these hyperparam-

_ eters, we may obtain the optimal restored image.
A. Image restoration

A gray-scale image is represented by a{ggt_,  n of 2. Binary symmetric channel

fixed values. The variablé; takes an integer value between  \yhan binar _

; o X - y datd &,} (Q=2) takes O or 1, the type of
0 andQ—1. Even in black and white image, in addition to hnise may also be bibnary. In such a case, a pixel of the
gray-scale image, most of the natural images have nontrivighigina| image is flipped with the probability, the error rate.
structures generally. Therefore, it is impossible to discuss thep 4 arror probabilities of flipping the signai1 to 0 and 0 to

property of a give_n specific natural image, exactly. Nevert_he-+ 1 are the same. The probability distribution of this output
less, we may notice that an eminent property of natural ImﬁTb}E{O 1 is expressed as follows:
e ' '

ages is local smoothness. Therefore, we assume that t
original image is generated by the Boltzmann probability

represented by the following: P {&D :Ziexr{ — B> (Tip— fi,b)z}, (4)

' @) where

_t oed B e
Ps({&h)= Z(Bs)exr{ 27 25 (676)

where (j) represents interacting sites ant the coordina- _ ol BN
tion number.Z(Bs) is the normalization constant, angl Z,=Tr,, ex _'BTZ (7ip=&ip)”|=[1+e%]7
(:Ts’l) is the inverse temperature to generate the original
image. If B¢ is large, an original image with many clusters Tpe parametep, is defined byp becomes
consisting of the same value is generated.

A degraded image is generated by sending data of the

1_
original image through a noisy channel. We consider two ,BT=In—p. (5)
kinds of noise. One is the binary noise caused by a binary P
symmetric channel and another is the Gaussian noise caused ) o i
by the Gaussian channel. The posterior probability in this case is
1. Gaussian channel P{7o}{on}) Pml{on})
- nput, PUoH ) =5 Bl {ooh Patlaw))
In the Gaussian channel, the outpuffor an inputé; is a 75~ U Tbs110bs ) Fm(10b
Gaussian random variable with meag¢; and variancer?.
The probability distribution of output given the inp{g} is Nexr( —hY, (o p—7ip)?
written as i ' ’
PUANE = e~ 5 3 (- mé)?|. (@) 23 (o)
Ne2TT 272 I I .
=exp(—Hg). (6)

The degraded imaggr}; -
ability distribution.

According to the Bayes formula, the posterior probability B. MPM estimation and mean-square error
P({o}|{7}) that the estimate of source sequence, namely,
restored image, i$o};—, . N, provided that the output is
{7}, is given as

n IS generated by this prob-

.....

the Next, we discuss the method to estimate the original im-
age from the preceding posterior probability distribution and
to evaluate the restored image that is obtained by such esti-

.....

mations.
P{o}l{rh= PUm o} Pri{o}) We consider the marginal distribution obtained from the
P H{o}) Pm{0}) posterior probability distribution Eq3) [or Eqg. (6)] to esti-
B mate the original image
~exp(—h2 (oi=m)*=57 2 (0= 0))°
i ij —
Poil{rh= 2 P({a}l{7). )
=exp(—Hg). (3 ey
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Using this marginal probability distribution, we calculate the 010
local magnetization at a siieas given by —[ ¢, -2 — 00 1
Q-1 1 21 &,
(1)p, 0= 2, oPal{r). ®) el —

o : OE — 1) =
&} €-1 Lo 1

Since the above expectation value is a continuous real num-
ber, we need to change it into an integer by means of the {8}

following function(): because the original image consists of iy

the discrete value in digital images, the restored image is the, ~'C: 1. The example of decomposition by means of the method
estimation of original image should, properly, take the dis-Of threshold division in th&)=3 and six-site case.

crete value We generate binary data from ti@zvalue data using the
Q Q-Ising form by means of the following function:
2k—-1
Q(<Ui>ﬁm,h)5k21 k[®(<‘7i>ﬁm,h_ T) O&—k) =& =1(&=k),  0(¢<k), (11

wherek(e{1,2,... Q—1}) is the threshold value ané
(9) (e{0,1,...Q—1}) is the input data. We obtainQ(—1)

sets of binary data from @-value data by using this function

with threshold value changed from 1 @— 1. This method
Areal number(o;)z 1 is translated into the closest integer. is called thethreshold division For example, we consider a
Then we regard the above discrete val¢(o;)) as the setwithQ=3 (0, or 1, or 2) and six pixel§1,2,1,1,0,2. If
value ofith pixel for restored image at finitg,, andhin the = We insert this set into the above function with the threshold
finite-temperature process. valuek=2, the binary sef0,1,0,0,0,} is generated. The set

In the MAP estimation, the estimation of the original im- {1,1,1,1,0,} is also generated wheg=1. Thus, two binary

age is regarded as the det;} that maximizes the posterior sets{0,1,0,0,0,} and{1,1,1,1,0,} are generated from the
probability distribution Egs.(3),(6)]. In other words, it is the three-value sef1,2,1,1,0,2. These operations are depicted
set that minimizes the energy of the system described by thi@ Fig. 1. The expression of binary dafa,(={0,1}) pro-
Hamiltoniang or Hg and is actually the ground state. Con- duced by this method is different from the usual binary no-
sequently, the above estimation corresponds to the MAP egation because the relation betweeQaalue data and@

2k+1
-0 <O-i>[3m,h_ 2

timation whenT,,—0 (B8,—), keepingH=h/8,, con- —1) sets of binary data becomes
stant. o-1

It is very important to evaluate the performance of resto- N I _ : 12
ration by means of these estimations. For this purpose, we G=diatéiz fio- kZl Sik: (12

assume that we know the original image and evaluate the ) ) o
performance of restoration by measuring the distance beWe call binary data generated by this threshold division the
tween the original and the restored images given by th&it-decomposed date3DD). _ ,
above estimation. In order to measure the distance between N€xt, the process in the restoration of gray-scale image

the original and the restored images, we use the following'Sing the bit-decomposed data becomes the following:
mean square error as the distance: (1) Decompose &-value data(original image into (Q
—1) sets of binary data before transmission.

1 (2) Send Q—1) sets of binary data through a noisy chan-

Ho= 2 [&—Q((0i)p, 0] (10 nel.
' (3) Receive Q—1) sets of corrupted binary daf@e-
graded image

(4) Restore the original image from the degraded image.

Obviously, this procedure is different from the method in
which the rawQ-value data are sent.

Following the general formulation mentioned in the pre-

We next discuss the restoration of the gray-scale imageious section, we formulate the above process. The posterior
using bit-decomposed data. It is expected that the effects girobability necessary for restoration is the following:
noise on the binary data is lower than that on @&alue

whose value depends on the hyperparaméteand 3,,, ap-
pearing in the thermal average.

C. Method of threshold division

data for image restoration: the binary data is estimated easily PHotHmbim) - d7e-1D)

compared with thé€-value data because of the explicit rep- P{r}{ma} .. Aot l{oh)Pu({o})
resentation. Since the original image is estimated by using " 5

the information of degraded image, the performance of res- Mo PArhimah - - Aro- 1t {oh Pr{a})

toration ought to be deeply affected by the effects of noise. Bm

Therefore, we expect that the performance of restoration is ~ex;{ —hz_ E (O'i'k—Ti'k)z—Z— Z (o-i—aj)z ,
improved by using the binary data instead of Qevalue bk Z

data. (13
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where we useflo} to denote the dynamical variables used towhere ¢; takes a value between 0 a@—1, and 7 is a
estimate{¢}. The notationo;  €{0,1} is the estimation of ~Gaussian random variable with mea§¢; and variancer’2.
decomposed datg; . The notationr; ,{0,1} is the de- We calculate the posterior probability using E¢$6) and
graded binary data. The relation between,,7 , and (17). In the bit-decomposed data case,
oj,7; is the same as that betweénand¢;  [Eq. (12)].

In the restoration of gray-scale image using @dsing P{at{r} 2}, - d7o-1D)
form, the posterior probability distribution is given by 0-1

B ~ l_k[ Pc{md{o) Pm({a})
p({a}|{7})~ex;{—hzi (=) =% 2 (oi—UnZ).

B
(14 ~exp(—h2i Ek (oik— Ti,k)z—ﬁ% (Ui_‘fj)2>
The difference of the posterior probability between our _
method(13) and theQ-Ising form(14) is only in the random- =exp(— Her)- (18)

field term. That is to say, the effects of noise in our metho
are different from the case where the r&nising data are
sent.

dIn the Q-Ising case,

P({a}Ih}%exp(—hZ (oi—n)z—f—,ﬁZ (oi—o,-)z).
i i,]

IIl. ANALYSIS OF THE INFINITE-RANGE MODEL ' (19

In this section, we discuss the restoration of the gray-scal
image in the infinite-range modéhean-field model Since
the infinite-range model is the model in which all pixels

interact mutually, it is not useful for restoration of real im- cameN. S
ages directly. However, the analysis of image restoration in We calculate the free energy from these probability distri-

P . . . __putions to clarify the behavior of macroscopic quantities.
the infinite-range model is very useful in understandlngsmce there is gndomness in the field for trﬁ)e s?ain system

ualitatively the property of macroscopic quantities. For this . . S .

(r]eason WZ invgstigatey the averagertjj pqerformance of o escribed by the effective Hamiltoniaq in Eqs. (18) and .

method by using the infinite-range model 19), the free energy must be averaged over the probability
' agistribution of the random field in addition to the thermal

Suppose that the prior probability generates the origin . .
image in the infinite-range model like E€L). Then theith average. Accordingly, we calculate the free energy per site by

pixel interacts all other pixels and the prior probability dis-
tribution is represented as f=F/N= —

q‘he difference of these expressions and Ef3), (14) in the
previous section is only that the coordination numbére-

Ng- [zl (20)

exp{ - f_l\sl E (gi_gj)Z}, (15 By using the replica method, we obtain the following repli-
1 cated partition function:

1
Z(Bs)

Ps({g}):

whereN is the system size and(S;) is the partition func- | _hrep
tion of the ferromagnetiQ-Ising model. We assume that the [Z ]=Z§ ET Ps({&HPUTH{ENTr e et
original image is generated by this probability both in the
bit-decomposed data case and @dsing case. In this sec- 1
tion, we adopt as the original image a snap shot of the system =Tr, H dr, == _0-DN
produced by the above probability. Lk (N27T)

We treat the Gaussian channel for simplicity. In our 1
method, _the G_aussian chanr_wel in which input data are ex- xexd — — E (7= To&:)?
pressed in a binary form is given by 2729

Bs
1 1 = g2
Pk({Ti,k}Hgi,k}):\/z——meXF{—; Z (Tik— Tofi,k)zl, xex;{ 2N %: (&=¢) }Tra

(16)
Xexr{_hz zk: 2 (’Tiyk—O'ink)z

where 7;  is a Gaussian random variable with meayz;

and variance. The inputé;  takes 0 or 1. For comparison, B
the Q-Ising case is denoted _ﬁ 2 > (Uia_ffja)z , (21)
ij a
PUmI&EDH= ! exg — ! > (ri— 72, wherea is the label ofn dummy replicas. Assuming replica
vemT! 2729 symmetric ansatm,=m (V«), the following expressions

(17) of the order parameters are derived:
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2 " " ' expression. It turns out that the distarl¢g(BDD) becomes
simple in the thermodynamic limN— o
15 ; 1
HE(BDD) = 2 {(&atéiat - +éig-)
£ 1 (72t T2t 700}
2
= < ( PR >
K K
05 | Ty eees Q 161,y §Q 1
T (19— 1)?
0
=(Q-1)7°+—5——
N R Z(B9
0 02 04 06 08 1 12 Q-1
T _ 2
s Xtrg, ., foos kgl gkezﬂsmog ék IBS(Ek: &)
FIG. 2. Magnetization of the original image as a function of the
source temperature f@=3. The solid line corresponds to a glo- =(Q-1)7 (26)
bally stable solutiormy=1 and the dotted lines correspond to lo- ) o ]
cally stable solutionsny=0 andmy=1. When the meam, of the Gaussian noise is one, the distance

HZL(BDD) depends on the variancé only. In the Q-Ising

1 form, H5(Q Ising) is

1=my==——tr, £e2™ Bé—Bst? 29
[f ] Mg Z(ﬁs) rf ge 0 ( ) . 1
HB(Q Ising =5 > {&—7}?
1 2 '
[(o7")]=m= 5 —tre2Mmobsé=hst 12
Z(Bs) =72+ —( o~ 1) trg[fezﬁsmog_ﬁsgz]
f 5 f 5 tr, o exp(Hef) - Z(B9)
X Ug ..., UQ_lm, (23 :7_/2’ (27)

where 7’2 is the variance of a Gaussian channel in the

Q-lIsing form and is different fromr in the bit-decomposed

data. Whenr)=0, HL(Q Ising)= 2 similarly to the bit-

Her=2BmMo— Bma?—h>, o2+2h7Y, Uy decomposed data case. As the rate of degradation is equal to
K K each other, namel{d[(BDD)=H[(Q Ising), the variance

of a noisy channel between in our meth@6) and that in

where we defined®u=(du/\27)e */2 and

+2hro§ Eoy . (24  the Q-Ising form (27) satisfies the following relation:
Equation (22) represents the magnetization of the original = T ) (28)
image in the infinite-range model. The behavior of the source V-1

magnetizationm, as a function of the temperatuig is , ,
shown in Fig. 2. Equatiof23) is the equation of state for the ~ Next, we calculate the restoration of the gray-scale image
magnetization of the restored image. In the liNit>o, the ~ WhenQ=3. We plot the magnetizatiomy, of original image

mean-square errdEq. (10)] is rewritten as as a function of source temperatirgfor Q=3 in Fig. 2. In
the high-temperature regiohs—o°, the magnetization be-

1 5 comesmy=(0+1+2)/3=1, since each spin takes all the
HD:Z(B )trg e?Mofst™ st f Dug ... f Dug-1 values with the same probability 1/3. We see that two locally
S stable states are generated in the middle range of tempera-
X{&—Q(af))}2. (25)  ture. The globally stable state is the linerof=1. The tran-

sition temperature between the paramagnetic phase and the

We next assume a condition to compare the performanckerromagnetic phase i$.~0.9. These locally stable states
of restoration between using the bit-decomposed data and thecome more stable with the decrease of temperature and
Q-Ising form. The condition is that the distance between thecorrespond to the globally stable statag=0 andmy=2 in
original and the degraded images in our method is equal td,=0. That is, the system of the ferromagnefglsing
that in theQ-Ising form. We may compare the difference of model forQ=3 has triple degeneracy.
performance in disparate noisy channels by this condition. We use a snapshot of the system when the magnetization
The distance between the original and degraded images is8 my=1 at T,=0.75 as the original image. When the dis-
our methodH;(BDD) is expressed similarly to the above tance between the original image and the degraded image is
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AT —
1.8 | 0 —
2 .............
16| 0 -
14 \
12|
£ 1 2
08 04}
0.8 |
0.4t
02 r -
i ) . 0.8 ) FIG. 3. The magnetizatiom and correspond-
0 02 04 06 08 "0 02 04 06 08 ing free-energyfrg are plotted in the upper-left
T T and upper-right figures. The mean-square error is
14 plotted in the lower-left figure. The lower-right
B ' m={ — figure represents an enhancement of the mean-
™ m=(1) _____ 0.3452 g — square error around the optimal values. The solid
12 - J— : [ line corresponds to the globally stable solution.
1}
[a] [a]
0.3451 |
T o8t -
0.6
0.345 |
04
0 02 04 06 08 1 0 02 04 06 08 1
Tm Tm

HZ5=1.0, macroscopic quantities behave as in Fig. 3. Thé®f hyperparametersl. The mean-square erréfp between

magnetizatiorm of Eq. (23) at the ratio of hyperparameters the mof global minimum and the original image, in some

H=h/B,,=0.25 has three stable statesTat=0 asm, we ratio of hyperparametersi are described in Fig. 4. The

see in the original image. At low temperature, the system hagmallest mean-square error is given B4=0.75 andH

one globally stable state=1 and two locally stable states =0.75. When the distance between the original and degraded

m=0 and 2. However, these locally stable states vanish a§nages is 1.0 ki5=1.0), we see that the deviation of

the ratio of hyperparameteitd becomes large. Seeing the Gaussian noise becomes JQ-1=1/J2 by Eq. (26).

free energy in Fig. 3, we find that the state of systemTherefore, when the ratio of hyperparameters corresponds to

branches out into a global minimum and local minima atthat of the prior parameterdH=h/g,=(7o/27%)/8s

T,=0.27. =0.75], the optimal restoration is given at the temperature
The mean-square errdi#y using m of the global mini-  corresponding to the source temperatufig,€Ts=0.75)

mum is smaller than that using of local minimum in all ~ similarly to the Ising model. At high temperaturég,— o,

temperature regions and gives the optimal value for the ratiall states appear with equal probability. Then the thermal

H=0.375(Q-Ising) ——
0.75 (BDD) -——-

034 |  H=05 ——— / . 0.34 |

FIG. 4. Left figure is the mean-square error as
a function of temperature for sevetdl The solid

a 0.33 a 0.33 line corresponds to the optimal valug,,=T;.
T T Right figure represents a comparison between the
mean-square error in the bit-decomposed data
032 032 and theQ-Ising form for the optimal hyperparam-
etersH=H°P'. The solid line is that for the BDD
case and the dotted line is tiilsing case.
0.31 . . . 0.31
] 0.5 1 1.5 2
T
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FIG. 5. The mean-square error in tlig=4
case is calculated by Monte Carlo simulatitime
upper figurg. Averages over ten samples that
(system size is 100100) are taken at each data
point. The ratio of hyperparametektis chosen

Tm to beH=0.6, 0.75(optimal, and 1.0. The mean-
square error whe@=28, p=0.15, HL~1.0(the
lower figures. The lower-left figure represents

0 08 the mean-square error Th,= 0.4, and the ratio of
: ' ' T ok “fHoogs = —— hyperparametersH is chosen to be H
H=0.6 —— A
(0p1)0.68 et i X 112 (opt) e { =0.6, 0.68(optimal), and 0.8. The lower-right
08t 0.8 1ot A H figure represents the mean-square errorTin
}_/ X ort } =0.6, and the ratio of hyperparametétds cho-
07T I }’ *f ] ﬁ . sen to beH=0.8, 1.0(optima), and 1.2.
£ 06 { £ 06} I
i; L7y i A
S i/ ey %
05 1%} 1 /¥ Hads, A
{z\i f‘f ¥ 05| “iigls g"x £
1&5‘ i.}xiii E o F
L ¥ sy ; =z
0.4 LN Frad,ylan
it S
0.3 . ‘ . ‘ 0.4 —
0 02 04 06 08 1 0 02 04 06 08 1 12
Tm Tm

average of a spir becomes(o)=(0+1+2)/3=1 at all
pixels. The mean square error is

3
2 (£-1)2ePmobst At
Ho(Tm— )= 3 ~0.3452.
> e2mobst—pst®
é=0

(29

IV. MONTE CARLO SIMULATION

In this section, we investigate realistic pictures in two
dimensions and check the results obtained in the infinite-
range model. It is, however, difficult to investigate the resto-
ration of real images by analytical methods. We discuss the
restoration of two-dimensional images by means of Monte
Carlo simulations.

We suppose that the original image is generated by the
Boltzmann probability distribution as we did in the infinite-

If the distance between the original and degraded imagesange model case and we use a snap shot ofQiising
HL(BDD) or HL(Q Ising), is extremely large, the perfor- model at a temperature as the original image.
mance of restoration does not become smaller than this In digital images, the pixel takes discrete values. Even if

value.

real-valued Gaussian noise is added in the degradation pro-

We compare the optimal performance of restoration usingess, we have to regard such a noise as the discrete(fmise

our method with that using th@-Ising form under the con-

example, binary noigewhen both the original and the de-

dition that the degradation of image in our method is equivagraded images are digita[This is essentially the same situ-

lent to the one in theQ-Ising form, namely,HS(BDD)

ation as in a error-correcting codgkl]). Therefore, we con-

=H{ (Q-Ising form). In theQ-Ising form case, the deviation sider the binary noise caused by the binary symmetric
is 7=1.0 by Eq.(27) whenH = 1.0. The optimal restoration channel with the error probabilitigs=0.10 (Q=4) andp
in the Q-Ising form is also given in the ratio of hyperparam- =0.15 (Q=8), which correspond to the parametefs

eters corresponding to that of source paramdtelrs h/3,,

~2.2 andB,~1.7 by Eq.(5). The size of digital image is

=(7o/27%)/ B=0.375. The optimal performance of resto- 100X 100 and averages over ten samples are taken at each

ration in both our method and th@-Ising form is shown in

data point.

Fig. 4. We see that the restoration by our method gives a Figure 5 (the upper figure represents the mean-square

better performance than that of tielsing form.

error of severalH when Q=4, T,=0.35, my~1.2, p
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=0.10, andH7~0.30. The optimal restoration is given at TABLE I. Comparison of performance between our method and

_ _ _ _ P . (oo the Q-Ising form. The ratios of pixels at which the nearest-
Tm=Ts, H=h/fn=p:/fs~0.75, similar to in the infinite neighboring pixels take the same value in the original image, the

ran%?emrﬂgzlﬁ square errors f@=8, T.=0.4, (0.6), M, degraded image and restored image are represented as “NNP1.”
~2.2,(3.0, p=0.15, andHj~ 1.0 are also shown in Fig. 5 Original Image Hopt NNP1-O NNP1-D NNP1-R
(the lower two figures. We see that the best performance of
restoration at each temperature is obtained at the ratio ¢¢hair(BDD) 0.104 67500 0.827925 0.023925 0.870800
hyperparameters corresponding to that of the prior param- Chair (Q-Ising) ~ 0.13967500 0.827925 0.127 746 0.849700
eters, and the performance of restorationTig=0.4 (the  Girl (BDD) 0.22960000 0.552725 0.019000 0.636575
lower left) is better than that iT;=0.6 (the lower righf as  Girl (Q-Ising) 0.266 57500 0.552725 0.092100 0.452850
written before. House(BDD) 0.38037500 0.538375 0.018000 0.374 400
House Q-Isingg  0.36840000 0.538375 0.079225 0.469 675
V. MEAN-FIELD ANNEALING Lena(BDD) 0.35317500 0.450500 0.016575 0.467 425

) ) ) Lena @Q-Ising) 0.458 00000 0.450500 0.056086 0.449 450
The amount of computation required for restoration bYp1angrill (BDD)  0.64400000 0.147 900 0.008 950 0.136975

means of Monte Carlo simulation is enormous. Hence, in the;anqril (Q-Ising) 0.55120000 0.147900 0.021750 0.111100
present section, we reconstruct the original image from bi-

nary degraded images by means of the mean-field annealing

[12,13 with periodic boundary conditions. This method en- The variation of the above free energy is calculated with
ables us to search for the optimal solution quickly. We applyrespect to the marginal probability distribution at a certain
the mean-field approximation to the posterior probability dis-site: p;; . Finally, the recursion relation with respect to the

tribution local magnetization for the iteration algorithm is obtained as
Q-1
PHot{m} {7}, ... {7o-1})
. © > i exp(Hiye)
t+1_ i~
- - _ 32 m; = , (34)
Z(,Bm,h)exp( h2 3 (o m ! Zye
:Bm 2 HI :& t + t + t + t S 2
3N > (gi—0))?). (30) ME= o (Mg F My g Mg+ Mg ) 05— B
1]
In order to treat each site separately, we trace out with re- —h>, (oij.00) 2+ 2h> Tij (0 Tij (k) » (35
k k

spect to all pixels besides thth pixel in the above probabil-

ity distribution where Zy is the normalization constant in the mean-field

approximation. We solve the above relations numerically un-
pij(n):kll;[ij Moy o s PUo{m} {7}, - {70-1) der the convergence condition
N
=Ty o PUG T {7, . {7o- 1) W=

Xé(n,()'ij), (31)

1

— t+)_mi <108

N oZ,) Imf m{P|<1078, (36)

and obtain approximately the restored image at each tem-

perature. The annealing schedule is seAat,=0.01.

where () represents the site index in two dimensionand . .
We compare the performance of restoration using our

j are the coordinates of andy axes, respectively. This ex- . . . ; .
pression is called the marginal probability distribution. Ac- method W.'th that using th@-Ising form for five l§|nds of
cording to mean-field approximation, the posterior probabiI-St"JmOIarOI |maTge514]. we chooseQ=8, syst_em size 200
ity distribution (30) is approximated by the product of the X_ZQO' andH_Dzl.OO. The Fesu't IS shovx_/n in Table 1. The_
marginal probability distributiori31) as follows I(;_rlguéal versions of these five standard image are shown in
ig. 6.
The original, degraded, and optimal restored images in
P{ot{r} i}, ... .{qul})=H pij(n). (32 our method and th&-Ising form are shown in Fig. 7 for the
(ij) case of “lena.”
In Table I, the ratio of pixels at which the nearest-
The recursion relation for the iterative algorithm is de- neighboring pixels take the same value is also represented.
rived from a variational principle. To derive the recursion We see that the performance of restoration using our method
relation, we substitute the expression of approximat@® s better than that using th@-Ising form in the standard

to the free energy pictures “chair” and “girl.” However, the Q-Ising form is
better in “house,” “lena,” and “mandrill.” One of the dif-
F(p)=E(p)—T,S(p). (33 ferences is that “chair” and “girl” have a lot of large parts
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FIG. 6. Standard images: “chair,” “girl,”
“house,” “lena,” and “mandrill.”

”lena” (left) and ”mandrill” (right)

and do not have short edges compared with the other picturés the Q-Ising form. Therefore, the noise in our method has
as we see intuitively. In Table I, the “chair” that has obvi- the effect of smoothing, and the restoration using our method
ously large parts is quantitatively expressed by the ratio ofs efficient for original images in which eliminating noise is
pixels at which the nearest-neighboring pixels take the samgiore significant rather than preserving informations of origi-
value. However, the ratio in “girl” is as much as that in nal image as “chair” and “girl.”

“house” and “lena.” Furthermore, we compare the performance using our

In order to investigate this aspect in more detail, we showyathod and in th€-Ising form for theH;~ 2.0 case. Other

the ratio of p|xgls at ".Vh'Ch. the Q|ﬁerence among th'e value of.nitions are the same as the previous case. We may simply
the nearest-neighboring pixels is smaller than two in Table II

i Lo MRS R investigate the tolerance of our method and @ksing form
As seen in Table I, “girl” is similar to “chair” rather than . . o
“house” and “lena.” The effects of noise in the bit- against noise by compar.lr‘rgD~1.0. and 2.0 cases. The per-
decomposed data and thelsing form are clarified by com- form_ance qf restoration is shown in Table 11l and“the r?sult—
paring the NNP1-D in Table | and NNP2-D in Table II. ant image is presented in Fig. 8 for the case of “lena.” The
NNP1-D in our method is smaller than that in thelsing ~ Performance of restoration is clearly worse than that in the
form for all kinds of standard images, but the decrease oPrevious case for all pictures, and the difference of perfor-
NNP2 from the original image to the degraded image in ourmance between our method and @Qesing form is clear.
method is small compared with that in tglsing form for ~ Moreover, the restoration using our method gives a better
five standard images. That is, the noise in our method affectgerformance than that using ti@lsing form in the standard
the original image widely, but the shift of value in a site is image “house.” The result is different from that whehj
small. On the other hand, the shift of value in a site is large~1.0. In theQ-Ising form, large clusters remain in the re-
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FIG. 7. Standard image “lena.” Left-side fig-
ures represent the restoration using the bit-
decomposed data, and right-side figures represent
the restoration using th-Ising form for Hf
~1.0.

Restored images

TABLE Ill. Comparison of performance between using our
method and the&)-Ising form for five standard images whé#y
TABLE II. Ratio of pixel at which the difference among the ~2.0. In this case, the restoration using our method is more effi-
value of the nearest-neighboring pixels is smaller than two in thecient than that using th®-Ising form in three standard images:

original, degraded, and restored images. “chair,” “girl,” and “house.”

Original Image NNP2-O NNP2-D NNP2-R HZ* Original Image HEP NNP-O NNP-D NNP-R
Chair (BDD) 0.955475 0.522025 0.998 600 0.104 675 00 Chair (BDD) 0.15512500 0.827925 0.006 525 0.873 225
Chair (Q-Ising) 0.955475 0.476000 0.999 750 0.139 675 00 Chair (Q-Ising) 0.34862500 0.827925 0.050550 0.629 175
Girl (BDD) 0.945025 0.450400 0.993850 0.229600 00 Girl (BDD) 0.34907500 0.552725 0.007 175 0.653 800

Girl (Q-Ising) 0.945025 0.438650 0.979750 0.266 57500 Girl (Q-Ising) 0.51250000 0.552725 0.044300 0.519775
House(BDD) 0.838400 0.442450 0.959600 0.380 37500 House(BDD) 0.53577500 0.538375 0.006625 0.485500
House Q-Ising)  0.838400 0.430775 0.967 225 0.368 400 00 House Q-Ising)  0.627 77500 0.538375 0.034900 0.276 275
Lena(BDD) 0.879325 0.413950 0.989825 0.35317500Lena(BDD) 0.547 20000 0.450500 0.005400 0.507 025
Lena @Q-Ising) 0.879325 0.402920 0.981625 0.348000 00 Lena @Q-Ising) 0.48840000 0.450500 0.024625 0.543100
Mandrill (BDD)  0.615325 0.298 100 0.934 050 0.644 000 00 Mandrill (BDD)  0.89227500 0.147900 0.004 225 0.469 375
Mandrill (Q-Ising) 0.615325 0.272400 0.801025 0.551 200 00 Mandrill (Q-Ising) 0.764 95000 0.147 900 0.008175 0.254 500
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FIG. 8. Standard image “lena.” Left-side fig-
ures represent the restoration using the bit-
decomposed data, and right-side figures represent
the restoration using th-Ising form for Hf
~2.0.

Restored images

stored image as in Fig. 8. Accordingly, we conclude that theDne is the method of restoration where the original image is
restoration using the bit-decomposed data is not affected byestored fromQ—1 sets of binary degraded images, which
the noise compared with that using tQelsing form in this  are generated from the received, degra@Qechlue image by
case. the method of threshold division. Another is the method of
Consequently, we found that the restoration using ourestoration where the original image is restored by using the
method is more efficient than that in tl@@Ising form in  Q-Ising form after translatind — 1 sets of binary degraded
original images where the nearest-neighboring pixels takémages into aQ-value degraded image. These restoration
the close values. The reason is that to eliminate the addgstocesses are shown in Fig. 9.
noise is more significant than the information of the original The second process is not efficient in the restoration of the
image in such images. Regardless of @dsing form and  gray-scale image because the performance of restoration is
our method, the restoration of such images tend to give goodiorse than that both using our method and@hksing form.
performance compared with that of other images in the im-On the other hand, the first process gives interesting results
age restoration using the method of statistical mechanicss in Table IV wherH5~ 1.0. Noting Table 1V, we find that
Moreover, our method may give the adequate restored imag&is method gives a better performance than our method and
in the original images “chair,” “girl,” and “house” even if  the Q-Ising form for all standard images: “chair,” “girl,”
the noise is strong to a certain extent: for exampe, “house,” “lena,” and “mandrill.” The restoration of stan-
~2.0. dard images using this method for the case of “lena” is
Finally, we try to restore the original image by using the shown in Fig. 10. This idea that, after @value data are
composition of our method and tt@Ising form. Two pro- received, they are decomposed into binary data has been al-
cesses are considered in restoration using the compositioready used in the field of engineering. The filter is called the
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FIG. 9. Restoration processes using the composition of both out
method and th&-Ising form. In the upper proces§irst process
we decompose @-value degraded image inf@—1 sets of binary
degraded images after we receive@aalue degraded image. Us-
ing the binary degraded images, we restore the original image. Or
the other hand, in the lower proce&econd proce$swe received
Q—1 sets of binary degraded images. After they are translated intc
a Q-value degraded image, we restore the original image using the
Q-Ising form.

Stack filter[15] which works on decomposed binary data  FIG. 10. Standard image “lena.” The left, center, and right fig-

after reception. ures are the original, degraded, and restored images, respectively, in
The Stack filter, by means of the method of statisticalthe composition process whéf~1.0.

mechanics as the first process, gives a better performance

than the other two methods, but the theoretical framework i$n order to obtain the averaged performance, we calculated
not clear. Because we have to assume the noisy procegse restoration of the gray-scale image by means of the rep-
matching the degraded data in the Bayesian viewpoint, it ifica method. Then we found that the mean-square error has a
very difficult for us to estimate the noisy channel matchingminimum at the finite temperature for any ratio of the hyper-
such binary data. Accordingly, it is very well possible that parametersH. However, when the noise rate is extremely
the hyperparametdr cannot be estimated appropriately for |arge, the minimum sinks under the mean-square error
the hyperparameters estimation in the Stack filter by meang o(Tm—) in the high-temperature limit. In other words,

of the method of statistical mechanics. we may only obtain the restored image in which all states
appear with equal probability as the optimal restored image
V1. SUMMARY AND DISCUSSIONS when the original image is very corrupted. The best perfor-

mance of restoration is given at the temperature at which the
In this paper, we investigated the restoration of the grayoriginal image is generated, when the ratio of hyperparam-
scale image using the bit-decomposed data instead of th&ers corresponds to that of the prior parameters. This result
conventionaQ-Ising form and found the conditions to show is also common between the |Sing Spin and @B|ng Spin
that our method is more efficient than the method of thecases. Furthermore, we obtained the quantitative result that
Q-Ising form. the performance of restoration using our method is better
In the infinite-range model, we analyzed the image restothan that using theQ-Ising form when HZ(BDD)
ration when the original image is affected by the Gaussiar_ HL(Q Ising).
noise, and obtained the static properties of image restoration. \yo analyzed the restoration of realistic images in two

) ) dimensions by means of the Monte Carlo method and the

TABLE IV. Comparison of performance among using our nean field annealing approximately. Using the Monte Carlo
method, theQ-Ising form, and the composition for five standard o4 we confirmed the result of the infinite-range model
Images V\.’hem Bwl'g: n thlshcasek,] the restoration usglgdthe gon;'that the mean-square error gives the optimal minimum value
ch-)ISslit:wognféfmrTr?r;Izt;ﬂgg: dtirﬁgg:esét using our method and the, y,q temperature corresponding to the source temperature
when the ratio of hyperparameters corresponds to prior pa-

rameters for a snapshot of tlelsing model forQ=4 and 8.

Original Image Composition BbD Qlsing We restored five standard images by means of the mean-field
Chair 0.09427500 0.10467500 0.13967500 annealing and found that the restoration using our method is
Girl 0.18190000 0.22960000 0.26657500 better than that using th@-Ising form in the original images,
House 0.32717500 0.38037500 0.368 40000 Where keeping the information of original image is not sig-
Lena 0.25742500 0.35317500 0.34800000 hificant compared with eliminating the added noise as
Mandrill 052147500 0.64400000 0.55120000 “chair”and “girl.” The reason is that the effects of noise in

our method contain the effect of smoothing. However, our
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method is not efficient in images that need information of themethod is not affected by noise compared with that using the
original image strongly. Q-Ising form. One of the reasons is due to the output, namely
Thus, there are simply two types in natural images. One ishe degraded data, which takes the close value to input data
the image that consists of a little long edges and large suiby the effects of noise in our method. This is the most sig-
faces, and those images depend on a basic and commaificant property of our method. We expect that the restora-
property of natural image strongly. Another is the image thation using our method gives a further better performance
has many short edges and small clusters, and it is difficult tevhen theQ value is large. Because we could not distinguish
distinguish whether the original or degraded images in suchisually the difference between close values with increasing
images. Therefore, not only corrupted parts but correct partthe gray-scale level@ value), the effect of noise may be
may be destroyed by the effect of smoothing in such imagesuppressed visually. Accordingly, we may be able to obtain
In restoration of images by means of the method of statisticathe restored image that looks closer to the original image
mechanics, the effect of smoothing is strong compared witlintuitively.
keeping the information of the original image that the de-

graded image contains because we use it as common prop- ACKNOWLEDGMENT
erty of natural images. Therefore, we need some additional
information on the original image. The authors thank Professor Hidetoshi Nishimori for use-

Furthermore, we found also that the restoration using ouful discussions.
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