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Multistate image restoration by transmission of bit-decomposed data
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We report on the restoration of gray-scale image when it is decomposed into a binary form before trans-
mission. We assume that a gray-scale image expressed by a set ofQ-Ising spins is first decomposed into an
expression using Ising~binary! spins by means of the threshold division, namely, we produce (Q21) binary
Ising spins from aQ-Ising spin by the functionF(s i2m)51 if the input datas iP$0, . . . ,Q21% is s i>m
and 0 otherwise, wherem P$1, . . . ,Q21% is the threshold value. The effects of noise are different from the
case where the rawQ-Ising values are sent. We investigate whether it is more effective to use the binary data
for transmission, or to send the rawQ-Ising values. By using the mean-field model, we analyze the perfor-
mance of our method quantitatively. In order to investigate what kind of original picture is efficiently restored
by our method, the standard image in two dimensions is simulated by the mean-field annealing, and we
compare the performance of our method with that using theQ-Ising form. We show that our method is more
efficient than the one using theQ-Ising form when the original picture has large parts in which the nearest-
neighboring pixels take close values.

DOI: 10.1103/PhysRevE.65.016101 PACS number~s!: 02.50.2r, 05.20.2y, 05.50.1q
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I. INTRODUCTION

Statistical-mechanical approaches to the problems in
formation science are employed frequently, and it is n
known that such methods are very useful in various proble
@1#. Among such problems, the image restoration probl
has been investigated both theoretically and practic
@2–4#. We usually send and receive the information
means of various networks. The information is the data
document, sound, picture, and so on. However, it is gener
impossible for a receiver to receive complete transmit
data when a sender transmits something, because the da
transmitted through a noisy channel. If we restrict the type
data to that of the picture, the original image is affected
some kind of noise when it is sent by a defective fax, a fic
email, etc. When we receive such a corrupted image,
have to convert it using some kind of filter to obtain t
original image. Basically, it is the image restoration proble
to estimate the original data~the original image! from the
received, corrupted data~the degraded image!. We may re-
gard the digital picture as a discrete spin system. For
ample, a black and white image corresponds to an Ising
system by identifying the white color with11 and the black
with 21. Furthermore, the theory of image restoration
constructed by considering that two axes of the plane, thx
andy axis, correspond to two axes of time in the stochas
process. That is, the Markov process that the event occu
a specific time is affected by what happened at neighbo
pixels at a one-time step before.

There are mainly two standard approaches to the im
restoration by means of the method of statistical mechan
One is called the maximuma posteriori ~MAP! estimation,
in which the estimation of the original image is given b
maximizing a posterior probability distribution. This estim
tion will be seen to correspond to a search of the ground s
1063-651X/2001/65~1!/016101~13!/$20.00 65 0161
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of a spin system described by the effective Hamiltonian
the context of statistical mechanics. Another is the estima
in which we regard the expectation value with respect to
maximized marginal posterior probability at each site in th
mal equilibrium as the original image and is called the ma
mumposteriorimarginal~MPM! estimation. This estimation
is also called the finite-temperature restoration. Therefo
the MPM estimation includes the MAP estimation. Amon
the two estimations, it was proposed by Marroquinet al. @5#
that the MPM estimation gives better performance than
MAP estimation. Nishimori and Wong@6# proved this fact
for black and white images using a rigorous inequality. W
respect to the gray-scale image, the same has been show
Tanaka@7# from a different viewpoint.

Not only black and white images but also gray-scale i
ages are actively investigated by many people in the field
statistical mechanics. Restoration of gray-scale image u
chiral Potts spin@9# may not be appropriate since chiral Po
spin cannot express the distance among different sta
However,Q-Ising spin@8# may express the gray-scale lev
at least. Restoration of gray-scale image usingQ-Ising spin
was first investigated by Inoue and Carlucci@10#.

Inspired by their studies, we investigate the restoration
the gray-scale image expressed by theQ-Ising spin when it is
decomposed into the Ising spin before transmission. In
method, the gray-scale image is decomposed into binary
by means of the method of threshold division before it
transmitted. Then the bit-decomposed data is transmi
through a noisy channel. Therefore, the effects of noise
different from those in theQ-Ising form. We show how well
the original image is restored in our method in comparison
the restoration using theQ-Ising form.

This paper is organized as follows. In the next section,
explain the general formulation of image restoration and
method of threshold division. In Sec. III, we analyze t
©2001 The American Physical Society01-1
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TAKASHI TADAKI AND JUN-ICHI INOUE PHYSICAL REVIEW E 65 016101
static properties of image restoration in the infinite-ran
model. In Sec. IV, we verify the result of the infinite-rang
model in realistic pictures by means of Monte Carlo simu
tion. In Sec. V, standard image is restored by the method
mean-field annealing. The performance of restoration in
method is compared with that using theQ-Ising form. The
final section is denoted to summary and discussions.

II. GENERAL FORMULATION

A. Image restoration

A gray-scale image is represented by a set$j% i 51, . . . ,N of
fixed values. The variablej i takes an integer value betwee
0 andQ21. Even in black and white image, in addition
gray-scale image, most of the natural images have nontr
structures generally. Therefore, it is impossible to discuss
property of a given specific natural image, exactly. Nevert
less, we may notice that an eminent property of natural
ages is local smoothness. Therefore, we assume tha
original image is generated by the Boltzmann probabi
represented by the following:

Ps~$j%!5
1

Z~bs!
expF2

bs

2z (
( i j )

~j i2j j !
2G , ~1!

where (i j ) represents interacting sites andz is the coordina-
tion number.Z(bs) is the normalization constant, andbs

(5Ts
21) is the inverse temperature to generate the orig

image. If bs is large, an original image with many cluste
consisting of the same value is generated.

A degraded image is generated by sending data of
original image through a noisy channel. We consider t
kinds of noise. One is the binary noise caused by a bin
symmetric channel and another is the Gaussian noise ca
by the Gaussian channel.

1. Gaussian channel

In the Gaussian channel, the outputt i for an inputj i is a
Gaussian random variable with meant0j i and variancet2.
The probability distribution of output given the input$j% is
written as

P~$t%u$j%!5
1

A2pt
expF2

1

2t2 (
i

~t i2t0j i !
2G . ~2!

The degraded image$t% i 51, . . . ,N is generated by this prob
ability distribution.

According to the Bayes formula, the posterior probabil
P($s%u$t%) that the estimate of source sequence, namely,
restored image, is$s% i 51, . . . ,N , provided that the output is
$t%, is given as

P~$s%u$t%!5
P~$t%u$s%!Pm~$s%!

tr$s%P~$t%u$s%!Pm~$s%!

;expS 2h(
i

~s i2t i !
22

bm

2z (
i j

~s i2s j !
2D

[exp~2HG!. ~3!
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Since we may use the degraded image only and do
know the other information of the original image, we intr
duced the model priorPm($s%) to representa priori knowl-
edge on natural image:Ps($j%) represented by Eq.~1!. Fur-
thermore, prior parametersbs and t0 /t2 to control the
generation of original image and degraded image, resp
tively, are unknown quantities. Accordingly, we have to u
the so-called hyperparametersbm andh instead of prior pa-
rametersbs andt0 /t2. Then, controlling these hyperparam
eters, we may obtain the optimal restored image.

2. Binary symmetric channel

When binary data$jb% (Q52) takes 0 or 1, the type o
noise may also be binary. In such a case, a pixel of
original image is flipped with the probabilityp, the error rate.
The error probabilities of flipping the signal11 to 0 and 0 to
11 are the same. The probability distribution of this outp
$tb%P$0,1% is expressed as follows:

P~$tb%u$jb%!5
1

Zt
expF2bt(

i
~t i ,b2j i ,b!2G , ~4!

where

Zt5Trtb
expF2bt(

i
~t i ,b2j i ,b!2G5@11ebt#N.

The parameterbt is defined byp becomes

bt5 ln
12p

p
. ~5!

The posterior probability in this case is

P~$sb%u$tb%!5
P~$tb%u$sb%!Pm~$sb%!

trsb
P~$tb%u$sb%!Pm~$sb%!

;expS 2h(
i

~s i ,b2t i ,b!2

2
bm

2z (
i j

~s i ,b2s j ,b!2D
[exp~2HB!. ~6!

B. MPM estimation and mean-square error

Next, we discuss the method to estimate the original
age from the preceding posterior probability distribution a
to evaluate the restored image that is obtained by such
mations.

We consider the marginal distribution obtained from t
posterior probability distribution Eq.~3! @or Eq. ~6!# to esti-
mate the original image

P̄~s i u$t%![ (
sÞs i

P~$s%u$t%!. ~7!
1-2
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MULTISTATE IMAGE RESTORATION BY . . . PHYSICAL REVIEW E65 016101
Using this marginal probability distribution, we calculate t
local magnetization at a sitei as given by

^s i&bm ,h[ (
s i50

Q21

s i P̄~s i u$t%!. ~8!

Since the above expectation value is a continuous real n
ber, we need to change it into an integer by means of
following functionV: because the original image consists
the discrete value in digital images, the restored image is
estimation of original image should, properly, take the d
crete value

V~^s i&bm ,h![(
k51

Q

kFQS ^s i&bm ,h2
2k21

2 D
2QS ^s i&bm ,h2

2k11

2 D G . ~9!

A real number̂ s i&bm ,h is translated into the closest intege

Then we regard the above discrete valueV(^s i&) as the
value ofi th pixel for restored image at finitebm andh in the
finite-temperature process.

In the MAP estimation, the estimation of the original im
age is regarded as the set$s i% that maximizes the posterio
probability distribution@Eqs.~3!,~6!#. In other words, it is the
set that minimizes the energy of the system described by
HamiltonianHG or HB and is actually the ground state. Co
sequently, the above estimation corresponds to the MAP
timation when Tm→0 (bm→`), keeping H5h/bm con-
stant.

It is very important to evaluate the performance of res
ration by means of these estimations. For this purpose,
assume that we know the original image and evaluate
performance of restoration by measuring the distance
tween the original and the restored images given by
above estimation. In order to measure the distance betw
the original and the restored images, we use the follow
mean square error as the distance:

HD5
1

N (
i

@j i2V~^s i&bm ,h!#2, ~10!

whose value depends on the hyperparametersh andbm ap-
pearing in the thermal average.

C. Method of threshold division

We next discuss the restoration of the gray-scale im
using bit-decomposed data. It is expected that the effect
noise on the binary data is lower than that on theQ-value
data for image restoration: the binary data is estimated ea
compared with theQ-value data because of the explicit re
resentation. Since the original image is estimated by us
the information of degraded image, the performance of r
toration ought to be deeply affected by the effects of no
Therefore, we expect that the performance of restoratio
improved by using the binary data instead of theQ-value
data.
01610
-
e

f
e

-

he

s-

-
e
e

e-
e
en
g

e
of

ily

g
s-
.

is

We generate binary data from theQ-value data using the
Q-Ising form by means of the following function:

Q~j i2k!5j i ,k51~j i>k!, 0~j i,k!, ~11!

where k(P$1,2, . . . ,Q21%) is the threshold value andj i
(P$0,1, . . . ,Q21%) is the input data. We obtain (Q21)
sets of binary data from aQ-value data by using this function
with threshold value changed from 1 toQ21. This method
is called thethreshold division. For example, we consider
set withQ53 (0, or 1, or 2) and six pixels:$1,2,1,1,0,2%. If
we insert this set into the above function with the thresh
valuek52, the binary set$0,1,0,0,0,1% is generated. The se
$1,1,1,1,0,1% is also generated whenk51. Thus, two binary
sets $0,1,0,0,0,1% and $1,1,1,1,0,1% are generated from the
three-value set$1,2,1,1,0,2%. These operations are depicte
in Fig. 1. The expression of binary dataj i ,k(P$0,1%) pro-
duced by this method is different from the usual binary n
tation because the relation between aQ-value data and (Q
21) sets of binary data becomes

j i5j i ,11j i ,21•••1j i ,Q215 (
k51

Q21

j i ,k . ~12!

We call binary data generated by this threshold division
bit-decomposed data~BDD!.

Next, the process in the restoration of gray-scale ima
using the bit-decomposed data becomes the following:

~1! Decompose aQ-value data~original image! into (Q
21) sets of binary data before transmission.

~2! Send (Q21) sets of binary data through a noisy cha
nel.

~3! Receive (Q21) sets of corrupted binary data~de-
graded image!.

~4! Restore the original image from the degraded imag
Obviously, this procedure is different from the method

which the rawQ-value data are sent.
Following the general formulation mentioned in the pr

vious section, we formulate the above process. The poste
probability necessary for restoration is the following:

P~$s%u$t1%,$t2%, . . . ,$tQ21%!

5
P~$t1%,$t2%, . . . $tQ21%u$s%!Pm~$s%!

tr$s%P~$t1%,$t2%, . . . $tQ21%u$s%!Pm~$s%!

;expS 2h(
i

(
k

~s i ,k2t i ,k!
22

bm

2z (
i , j

~s i2s j !
2D ,

~13!

FIG. 1. The example of decomposition by means of the met
of threshold division in theQ53 and six-site case.
1-3
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where we used$s% to denote the dynamical variables used
estimate$j%. The notations i ,kP$0,1% is the estimation of
decomposed dataj i ,k . The notationt i ,kP$0,1% is the de-
graded binary data. The relation betweens i ,k ,t i ,k , and
s i ,t i is the same as that betweenj i andj i ,k @Eq. ~12!#.

In the restoration of gray-scale image using theQ-Ising
form, the posterior probability distribution is given by

P~$s%u$t%!;expS 2h(
i

~s i2t i !
22

bm

2z (
i j

~s i2s j !
2D .

~14!

The difference of the posterior probability between o
method~13! and theQ-Ising form~14! is only in the random-
field term. That is to say, the effects of noise in our meth
are different from the case where the rawQ-Ising data are
sent.

III. ANALYSIS OF THE INFINITE-RANGE MODEL

In this section, we discuss the restoration of the gray-sc
image in the infinite-range model~mean-field model!. Since
the infinite-range model is the model in which all pixe
interact mutually, it is not useful for restoration of real im
ages directly. However, the analysis of image restoration
the infinite-range model is very useful in understand
qualitatively the property of macroscopic quantities. For t
reason, we investigate the averaged performance of
method by using the infinite-range model.

Suppose that the prior probability generates the orig
image in the infinite-range model like Eq.~1!. Then thei th
pixel interacts all other pixels and the prior probability d
tribution is represented as

Ps~$j%!5
1

Z~bs!
expF2

bs

2N (
i j

~j i2j j !
2G , ~15!

whereN is the system size andZ(bs) is the partition func-
tion of the ferromagneticQ-Ising model. We assume that th
original image is generated by this probability both in t
bit-decomposed data case and theQ-Ising case. In this sec
tion, we adopt as the original image a snap shot of the sys
produced by the above probability.

We treat the Gaussian channel for simplicity. In o
method, the Gaussian channel in which input data are
pressed in a binary form is given by

Pk~$t i ,k%u$j i ,k%!5
1

A2pt
expF2

1

2t2 (
i

~t i ,k2t0j i ,k!
2G ,

~16!

wheret i ,k is a Gaussian random variable with meant0j i ,k
and variancet2. The inputj i ,k takes 0 or 1. For comparison
the Q-Ising case is denoted

P~$t i%u$j i%!5
1

A2pt8
expF2

1

2t82 (
i

~t i2t08j i !
2G ,

~17!
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where j i takes a value between 0 andQ21, and t i is a
Gaussian random variable with meant08j i and variancet82.
We calculate the posterior probability using Eqs.~16! and
~17!. In the bit-decomposed data case,

P~$s%u$t1%,$t2%, . . . ,$tQ21%!

; )
k

Q21

Pk~$tk%u$sk%!Pm~$s%!

;expS 2h(
i

(
k

~s i ,k2t i ,k!
22

bm

2N (
i , j

~s i2s j !
2D

[exp~2Heff!. ~18!

In the Q-Ising case,

P~$s%u$t%!;expS 2h(
i

~s i2t i !
22

bm

2N (
i , j

~s i2s j !
2D .

~19!

The difference of these expressions and Eqs.~13!, ~14! in the
previous section is only that the coordination numberz be-
cameN.

We calculate the free energy from these probability dis
butions to clarify the behavior of macroscopic quantitie
Since there is randomness in the field for the spin sys
described by the effective HamiltonianHeff in Eqs.~18! and
~19!, the free energy must be averaged over the probab
distribution of the random field in addition to the therm
average. Accordingly, we calculate the free energy per site

f 5F/N52
1

Nbm
@ ln Z#. ~20!

By using the replica method, we obtain the following rep
cated partition function:

@Zn#5(
j

(
t

Ps~$j%!P~$t%u$j%!Trs e2Heff
rep

5TrjE )
i ,k

dt i
(k) 1

~A2pt!(Q21)N

3expF2
1

2t2 (
i

~t i2t0j i !
2G

3expF2
bs

2N (
i j

~j i2j j !
2GTrs

3expF2h(
i

(
k

(
a

~t i ,k2s i ,k
a !2

2
bm

2N (
i j

(
a

~s i
a2s j

a!2G , ~21!

wherea is the label ofn dummy replicas. Assuming replic
symmetric ansatzma5m (;a), the following expressions
of the order parameters are derived:
1-4
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@j i #5m05
1

Z~bs!
trj je2m0bsj2bsj

2
, ~22!

@^s i
a&#5m5

1

Z~bs!
trje

2m0bsj2bsj
2

3E Du1 . . . ,E DuQ21

trss exp~H̃eff!

trs exp~H̃eff!
, ~23!

where we definedDu[(du/A2p)e2u2/2 and

H̃eff[2bmms2bms22h(
k

sk
212ht(

k
uksk

12ht0(
k

jksk . ~24!

Equation ~22! represents the magnetization of the origin
image in the infinite-range model. The behavior of the sou
magnetizationm0 as a function of the temperaturebs is
shown in Fig. 2. Equation~23! is the equation of state for th
magnetization of the restored image. In the limitN→`, the
mean-square error@Eq. ~10!# is rewritten as

HD5
1

Z~bs!
trj e2m0bsj2bsj

2E Du1 . . . ,E DuQ21

3$j i2V~^s i
a&!%2. ~25!

We next assume a condition to compare the performa
of restoration between using the bit-decomposed data and
Q-Ising form. The condition is that the distance between
original and the degraded images in our method is equa
that in theQ-Ising form. We may compare the difference
performance in disparate noisy channels by this condit
The distance between the original and degraded image
our methodHD

t (BDD) is expressed similarly to the abov

FIG. 2. Magnetization of the original image as a function of t
source temperature forQ53. The solid line corresponds to a glo
bally stable solutionm051 and the dotted lines correspond to l
cally stable solutionsm050 andm051.
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expression. It turns out that the distanceHD
t (BDD) becomes

simple in the thermodynamic limitN→`

HD
t ~BDD!5

1

N (
i

$~j i ,11j i ,21•••1j i ,Q21!

2~t i ,11t i ,21•••1t i ,Q21!%2

5K S (
k

jk2(
k

tkD 2L
t1 , . . . ,tQ21 ,j1 , . . . ,jQ21

5~Q21!t21
~t021!2

Z~bs!

3trj1 , . . . ,jQ21F (
k51

Q21

jke
2bsm0(

k
jk2bs((

k
jk)2G

5~Q21!t2. ~26!

When the meant0 of the Gaussian noise is one, the distan
HD

t (BDD) depends on the variancet2 only. In theQ-Ising
form, HD

t (Q Ising) is

HD
t ~Q Ising!5

1

N (
i

$j i2t i%
2

5t821
~t0821!2

Z~bs!
trj@je2bsm0j2bsj

2
#

5t82, ~27!

where t82 is the variance of a Gaussian channel in t
Q-Ising form and is different fromt in the bit-decomposed
data. Whent0850, HD

t (Q Ising)5t82 similarly to the bit-
decomposed data case. As the rate of degradation is equ
each other, namelyHD

t (BDD)5HD
t (Q Ising), the variance

of a noisy channel between in our method~26! and that in
the Q-Ising form ~27! satisfies the following relation:

t5
t8

AQ21
. ~28!

Next, we calculate the restoration of the gray-scale ima
whenQ53. We plot the magnetizationm0 of original image
as a function of source temperatureTs for Q53 in Fig. 2. In
the high-temperature regionTs→`, the magnetization be
comesm05(01112)/351, since each spin takes all th
values with the same probability 1/3. We see that two loca
stable states are generated in the middle range of temp
ture. The globally stable state is the line ofm051. The tran-
sition temperature between the paramagnetic phase and
ferromagnetic phase isTc;0.9. These locally stable state
become more stable with the decrease of temperature
correspond to the globally stable statesm050 andm052 in
Ts50. That is, the system of the ferromagneticQ-Ising
model forQ53 has triple degeneracy.

We use a snapshot of the system when the magnetiza
is m051 at Ts50.75 as the original image. When the di
tance between the original image and the degraded imag
1-5
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FIG. 3. The magnetizationm and correspond-
ing free-energyf RS are plotted in the upper-lef
and upper-right figures. The mean-square erro
plotted in the lower-left figure. The lower-righ
figure represents an enhancement of the me
square error around the optimal values. The so
line corresponds to the globally stable solution
h
s
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HD
t 51.0, macroscopic quantities behave as in Fig. 3. T

magnetizationm of Eq. ~23! at the ratio of hyperparameter
H[h/bm50.25 has three stable states atTm50 asm0 we
see in the original image. At low temperature, the system
one globally stable statem51 and two locally stable state
m50 and 2. However, these locally stable states vanish
the ratio of hyperparametersH becomes large. Seeing th
free energy in Fig. 3, we find that the state of syst
branches out into a global minimum and local minima
Tm50.27.

The mean-square errorHD using m of the global mini-
mum is smaller than that usingm of local minimum in all
temperature regions and gives the optimal value for the r
01610
e

s

as

t
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of hyperparametersH. The mean-square errorHD between
them of global minimum and the original imagem0 in some
ratio of hyperparametersH are described in Fig. 4. The
smallest mean-square error is given atTm50.75 and H
50.75. When the distance between the original and degra
images is 1.0 (HD

t 51.0), we see that the deviationt of
Gaussian noise becomes 1/AQ2151/A2 by Eq. ~26!.
Therefore, when the ratio of hyperparameters correspond
that of the prior parameters@H5h/bm5(t0/2t2)/bs
50.75#, the optimal restoration is given at the temperatu
corresponding to the source temperature (Tm5Ts50.75)
similarly to the Ising model. At high temperaturesTm→`,
all states appear with equal probability. Then the therm
as

the
ata
-

FIG. 4. Left figure is the mean-square error
a function of temperature for severalH. The solid
line corresponds to the optimal value,Tm5Ts .
Right figure represents a comparison between
mean-square error in the bit-decomposed d
and theQ-Ising form for the optimal hyperparam
etersH5Hopt. The solid line is that for the BDD
case and the dotted line is theQ-Ising case.
1-6
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FIG. 5. The mean-square error in theQ54
case is calculated by Monte Carlo simulation~the
upper figure!. Averages over ten samples th
~system size is 1003100) are taken at each dat
point. The ratio of hyperparametersH is chosen
to beH50.6, 0.75~optimal!, and 1.0. The mean-
square error whenQ58, p50.15, HD

t ;1.0 ~the
lower figures!. The lower-left figure represent
the mean-square error inTs50.4, and the ratio of
hyperparameters H is chosen to be H
50.6, 0.68 ~optimal!, and 0.8. The lower-right
figure represents the mean-square error inTs

50.6, and the ratio of hyperparametersH is cho-
sen to beH50.8, 1.0~optimal!, and 1.2.
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to-
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tric

each

re
average of a spins becomeŝ s&5(01112)/351 at all
pixels. The mean square error is

HD~Tm→`!5

(
j50

3

~j21!2e2m0bsj2bsj
2

(
j50

3

e2m0bsj2bsj
2

;0.3452.

~29!

If the distance between the original and degraded ima
HD

t (BDD) or HD
t (Q Ising), is extremely large, the perfor

mance of restoration does not become smaller than
value.

We compare the optimal performance of restoration us
our method with that using theQ-Ising form under the con-
dition that the degradation of image in our method is equi
lent to the one in theQ-Ising form, namely,HD

t (BDD)
5HD

t (Q-Ising form!. In theQ-Ising form case, the deviation
is t51.0 by Eq.~27! whenHD

t 51.0. The optimal restoration
in theQ-Ising form is also given in the ratio of hyperparam
eters corresponding to that of source parameters@H5h/bm
5(t0/2t2)/bm50.375#. The optimal performance of resto
ration in both our method and theQ-Ising form is shown in
Fig. 4. We see that the restoration by our method give
better performance than that of theQ-Ising form.
01610
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IV. MONTE CARLO SIMULATION

In this section, we investigate realistic pictures in tw
dimensions and check the results obtained in the infin
range model. It is, however, difficult to investigate the res
ration of real images by analytical methods. We discuss
restoration of two-dimensional images by means of Mo
Carlo simulations.

We suppose that the original image is generated by
Boltzmann probability distribution as we did in the infinite
range model case and we use a snap shot of theQ-Ising
model at a temperature as the original image.

In digital images, the pixel takes discrete values. Even
real-valued Gaussian noise is added in the degradation
cess, we have to regard such a noise as the discrete nois~for
example, binary noise! when both the original and the de
graded images are digital.~This is essentially the same situ
ation as in a error-correcting codes@11#!. Therefore, we con-
sider the binary noise caused by the binary symme
channel with the error probabilitiesp50.10 (Q54) andp
50.15 (Q58), which correspond to the parametersbt
;2.2 andbt;1.7 by Eq.~5!. The size of digital image is
1003100 and averages over ten samples are taken at
data point.

Figure 5 ~the upper figure! represents the mean-squa
error of several H when Q54, Ts50.35, m0;1.2, p
1-7
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50.10, andHD
t ;0.30. The optimal restoration is given

Tm5Ts , H5h/bm5bt /bs;0.75, similar to in the infinite-
range model.

The mean square errors forQ58, Ts50.4, ~0.6!, m0

;2.2, ~3.0!, p50.15, andHD
t ;1.0 are also shown in Fig. 5

~the lower two figures.!. We see that the best performance
restoration at each temperature is obtained at the ratio
hyperparametersH corresponding to that of the prior param
eters, and the performance of restoration inTs50.4 ~the
lower left! is better than that inTs50.6 ~the lower right! as
written before.

V. MEAN-FIELD ANNEALING

The amount of computation required for restoration
means of Monte Carlo simulation is enormous. Hence, in
present section, we reconstruct the original image from
nary degraded images by means of the mean-field anne
@12,13# with periodic boundary conditions. This method e
ables us to search for the optimal solution quickly. We ap
the mean-field approximation to the posterior probability d
tribution

P~$s%u$t1%,$t2%, . . . ,$tQ21%!

5
1

Z~bm ,h!
expS 2h(

i
(

k
~s i ,k2t i ,k!

2

2
bm

2N (
i , j

~s i2s j !
2D . ~30!

In order to treat each site separately, we trace out with
spect to all pixels besides thei th pixel in the above probabil
ity distribution

r i j ~n!5 )
klÞ i j

trs1 , . . . ,sQ21
P~$s%u$t1%,$t2%, . . . ,$tQ21%!

5Trs1 , . . . ,sQ21
P~$s%u$t1%,$t2%, . . . ,$tQ21%!

3d~n,s i j !, ~31!

where (i j ) represents the site index in two dimensions:i and
j are the coordinates ofx and y axes, respectively. This ex
pression is called the marginal probability distribution. A
cording to mean-field approximation, the posterior proba
ity distribution ~30! is approximated by the product of th
marginal probability distribution~31! as follows

P~$s%u$t1%,$t2%, . . . ,$tQ21%!.)
( i j )

r i j ~n!. ~32!

The recursion relation for the iterative algorithm is d
rived from a variational principle. To derive the recursio
relation, we substitute the expression of approximation~32!
to the free energy

F~r!5E~r!2TmS~r!. ~33!
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The variation of the above free energy is calculated w
respect to the marginal probability distribution at a certa
site: r i j . Finally, the recursion relation with respect to th
local magnetization for the iteration algorithm is obtained

mi j
t115

(
s i j 50

Q21

s i j exp~HMF
t !

ZMF
, ~34!

HMF
t 5

bm

2
~mi , j 11

t 1mi , j 21
t 1mi 11,j

t 1mi 21,j
t !s i j 2bms i j

2

2h(
k

~s i j ,(k)!
212h(

k
t i j ,(k)s i j ,(k) , ~35!

where ZMF is the normalization constant in the mean-fie
approximation. We solve the above relations numerically
der the convergence condition

e (t)[
1

N (
( i j )

N

umi j
(t11)2mi j

(t)u,1028, ~36!

and obtain approximately the restored image at each t
perature. The annealing schedule is set atDTm50.01.

We compare the performance of restoration using
method with that using theQ-Ising form for five kinds of
standard images@14#. We chooseQ58, system size5200
3200, andHD

t .1.00. The result is shown in Table I. Th
original versions of these five standard image are shown
Fig. 6.

The original, degraded, and optimal restored images
our method and theQ-Ising form are shown in Fig. 7 for the
case of ‘‘lena.’’

In Table I, the ratio of pixels at which the neares
neighboring pixels take the same value is also represen
We see that the performance of restoration using our met
is better than that using theQ-Ising form in the standard
pictures ‘‘chair’’ and ‘‘girl.’’ However, theQ-Ising form is
better in ‘‘house,’’ ‘‘lena,’’ and ‘‘mandrill.’’ One of the dif-
ferences is that ‘‘chair’’ and ‘‘girl’’ have a lot of large part

TABLE I. Comparison of performance between our method a
the Q-Ising form. The ratios of pixels at which the neares
neighboring pixels take the same value in the original image,
degraded image and restored image are represented as ‘‘NNP

Original Image HD
opt. NNP1-O NNP1-D NNP1-R

Chair ~BDD! 0.104 675 00 0.827 925 0.023 925 0.870 8
Chair (Q-Ising! 0.139 675 00 0.827 925 0.127 746 0.849 7
Girl ~BDD! 0.229 600 00 0.552 725 0.019 000 0.636 5
Girl (Q-Ising! 0.266 575 00 0.552 725 0.092 100 0.452 8
House~BDD! 0.380 375 00 0.538 375 0.018 000 0.374 4
House (Q-Ising! 0.368 400 00 0.538 375 0.079 225 0.469 6
Lena ~BDD! 0.353 175 00 0.450 500 0.016 575 0.467 4
Lena (Q-Ising! 0.458 000 00 0.450 500 0.056 086 0.449 4
Mandrill ~BDD! 0.644 000 00 0.147 900 0.008 950 0.136 9
Mandrill (Q-Ising! 0.551 200 00 0.147 900 0.021 750 0.111 1
1-8
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FIG. 6. Standard images: ‘‘chair,’’ ‘‘girl,’’
‘‘house,’’ ‘‘lena,’’ and ‘‘mandrill.’’
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and do not have short edges compared with the other pict
as we see intuitively. In Table I, the ‘‘chair’’ that has obv
ously large parts is quantitatively expressed by the ratio
pixels at which the nearest-neighboring pixels take the sa
value. However, the ratio in ‘‘girl’’ is as much as that i
‘‘house’’ and ‘‘lena.’’

In order to investigate this aspect in more detail, we sh
the ratio of pixels at which the difference among the value
the nearest-neighboring pixels is smaller than two in Table
As seen in Table II, ‘‘girl’’ is similar to ‘‘chair’’ rather than
‘‘house’’ and ‘‘lena.’’ The effects of noise in the bit
decomposed data and theQ-Ising form are clarified by com-
paring the NNP1-D in Table I and NNP2-D in Table I
NNP1-D in our method is smaller than that in theQ-Ising
form for all kinds of standard images, but the decrease
NNP2 from the original image to the degraded image in
method is small compared with that in theQ-Ising form for
five standard images. That is, the noise in our method aff
the original image widely, but the shift of value in a site
small. On the other hand, the shift of value in a site is la
01610
es
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in the Q-Ising form. Therefore, the noise in our method h
the effect of smoothing, and the restoration using our met
is efficient for original images in which eliminating noise
more significant rather than preserving informations of ori
nal image as ‘‘chair’’ and ‘‘girl.’’

Furthermore, we compare the performance using
method and in theQ-Ising form for theHD

t ;2.0 case. Other
conditions are the same as the previous case. We may sim
investigate the tolerance of our method and theQ-Ising form
against noise by comparingHD

t ;1.0 and 2.0 cases. The pe
formance of restoration is shown in Table III and the resu
ant image is presented in Fig. 8 for the case of ‘‘lena.’’ T
performance of restoration is clearly worse than that in
previous case for all pictures, and the difference of perf
mance between our method and theQ-Ising form is clear.
Moreover, the restoration using our method gives a be
performance than that using theQ-Ising form in the standard
image ‘‘house.’’ The result is different from that whenHD

t

;1.0. In theQ-Ising form, large clusters remain in the re
1-9
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FIG. 7. Standard image ‘‘lena.’’ Left-side fig
ures represent the restoration using the b
decomposed data, and right-side figures repres
the restoration using theQ-Ising form for HD

t
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TABLE II. Ratio of pixel at which the difference among th
value of the nearest-neighboring pixels is smaller than two in
original, degraded, and restored images.

Original Image NNP2-O NNP2-D NNP2-R HD
opt.

Chair ~BDD! 0.955 475 0.522 025 0.998 600 0.104 675
Chair (Q-Ising! 0.955 475 0.476 000 0.999 750 0.139 675
Girl ~BDD! 0.945 025 0.450 400 0.993 850 0.229 600
Girl (Q-Ising! 0.945 025 0.438 650 0.979 750 0.266 575
House~BDD! 0.838 400 0.442 450 0.959 600 0.380 375
House (Q-Ising! 0.838 400 0.430 775 0.967 225 0.368 400
Lena ~BDD! 0.879 325 0.413 950 0.989 825 0.353 175
Lena (Q-Ising! 0.879 325 0.402 920 0.981 625 0.348 000
Mandrill ~BDD! 0.615 325 0.298 100 0.934 050 0.644 000
Mandrill (Q-Ising! 0.615 325 0.272 400 0.801 025 0.551 200
01610
e

TABLE III. Comparison of performance between using o
method and theQ-Ising form for five standard images whenHD

t

;2.0. In this case, the restoration using our method is more e
cient than that using theQ-Ising form in three standard images
‘‘chair,’’ ‘‘girl,’’ and ‘‘house.’’

Original Image HD
opt. NNP-O NNP-D NNP-R

Chair ~BDD! 0.155 125 00 0.827 925 0.006 525 0.873 2
Chair (Q-Ising! 0.348 625 00 0.827 925 0.050 550 0.629 1
Girl ~BDD! 0.349 075 00 0.552 725 0.007 175 0.653 8
Girl (Q-Ising! 0.512 500 00 0.552 725 0.044 300 0.519 7
House~BDD! 0.535 775 00 0.538 375 0.006 625 0.485 5
House (Q-Ising! 0.627 775 00 0.538 375 0.034 900 0.276 2
Lena ~BDD! 0.547 200 00 0.450 500 0.005 400 0.507 0
Lena (Q-Ising! 0.488 400 00 0.450 500 0.024 625 0.543 1
Mandrill ~BDD! 0.892 275 00 0.147 900 0.004 225 0.469 3
Mandrill (Q-Ising! 0.764 950 00 0.147 900 0.008 175 0.254 5
1-10
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FIG. 8. Standard image ‘‘lena.’’ Left-side fig
ures represent the restoration using the b
decomposed data, and right-side figures repres
the restoration using theQ-Ising form for HD
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stored image as in Fig. 8. Accordingly, we conclude that
restoration using the bit-decomposed data is not affected
the noise compared with that using theQ-Ising form in this
case.

Consequently, we found that the restoration using
method is more efficient than that in theQ-Ising form in
original images where the nearest-neighboring pixels t
the close values. The reason is that to eliminate the ad
noise is more significant than the information of the origin
image in such images. Regardless of theQ-Ising form and
our method, the restoration of such images tend to give g
performance compared with that of other images in the
age restoration using the method of statistical mechan
Moreover, our method may give the adequate restored im
in the original images ‘‘chair,’’ ‘‘girl,’’ and ‘‘house’’ even if
the noise is strong to a certain extent: for example,HD

t

;2.0.
Finally, we try to restore the original image by using t

composition of our method and theQ-Ising form. Two pro-
cesses are considered in restoration using the compos
01610
e
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e
ed
l

d
-
s.
ge
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One is the method of restoration where the original image
restored fromQ21 sets of binary degraded images, whi
are generated from the received, degradedQ-value image by
the method of threshold division. Another is the method
restoration where the original image is restored by using
Q-Ising form after translatingQ21 sets of binary degrade
images into aQ-value degraded image. These restorat
processes are shown in Fig. 9.

The second process is not efficient in the restoration of
gray-scale image because the performance of restoratio
worse than that both using our method and theQ-Ising form.
On the other hand, the first process gives interesting res
as in Table IV whenHD

t ;1.0. Noting Table IV, we find that
this method gives a better performance than our method
the Q-Ising form for all standard images: ‘‘chair,’’ ‘‘girl,’’
‘‘house,’’ ‘‘lena,’’ and ‘‘mandrill.’’ The restoration of stan-
dard images using this method for the case of ‘‘lena’’
shown in Fig. 10. This idea that, after aQ-value data are
received, they are decomposed into binary data has bee
ready used in the field of engineering. The filter is called
1-11
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Stack filter @15# which works on decomposed binary da
after reception.

The Stack filter, by means of the method of statisti
mechanics as the first process, gives a better perform
than the other two methods, but the theoretical framewor
not clear. Because we have to assume the noisy pro
matching the degraded data in the Bayesian viewpoint,
very difficult for us to estimate the noisy channel matchi
such binary data. Accordingly, it is very well possible th
the hyperparameterh cannot be estimated appropriately f
the hyperparameters estimation in the Stack filter by me
of the method of statistical mechanics.

VI. SUMMARY AND DISCUSSIONS

In this paper, we investigated the restoration of the gr
scale image using the bit-decomposed data instead of
conventionalQ-Ising form and found the conditions to sho
that our method is more efficient than the method of
Q-Ising form.

In the infinite-range model, we analyzed the image res
ration when the original image is affected by the Gauss
noise, and obtained the static properties of image restora

FIG. 9. Restoration processes using the composition of both
method and theQ-Ising form. In the upper process~first process!,
we decompose aQ-value degraded image intoQ21 sets of binary
degraded images after we received aQ-value degraded image. Us
ing the binary degraded images, we restore the original image
the other hand, in the lower process~second process!, we received
Q21 sets of binary degraded images. After they are translated
a Q-value degraded image, we restore the original image using
Q-Ising form.

TABLE IV. Comparison of performance among using o
method, theQ-Ising form, and the composition for five standa
images whenHD

t ;1.0. In this case, the restoration using the co
position is more efficient than that using our method and
Q-Ising form in all standard images.

Original Image Composition BDD Q-Ising

Chair 0.094 275 00 0.104 675 00 0.139 675 0
Girl 0.181 900 00 0.229 600 00 0.266 575 00
House 0.327 175 00 0.380 375 00 0.368 400 0
Lena 0.257 425 00 0.353 175 00 0.348 000 0
Mandrill 0.521 475 00 0.644 000 00 0.551 200 0
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In order to obtain the averaged performance, we calcula
the restoration of the gray-scale image by means of the
lica method. Then we found that the mean-square error h
minimum at the finite temperature for any ratio of the hyp
parametersH. However, when the noise rate is extreme
large, the minimum sinks under the mean-square e
HD(Tm→`) in the high-temperature limit. In other words
we may only obtain the restored image in which all sta
appear with equal probability as the optimal restored ima
when the original image is very corrupted. The best perf
mance of restoration is given at the temperature at which
original image is generated, when the ratio of hyperpara
eters corresponds to that of the prior parameters. This re
is also common between the Ising spin and theQ-Ising spin
cases. Furthermore, we obtained the quantitative result
the performance of restoration using our method is be
than that using the Q-Ising form when HD

t (BDD)
5HD

t (Q Ising).
We analyzed the restoration of realistic images in t

dimensions by means of the Monte Carlo method and
mean-field annealing approximately. Using the Monte Ca
method, we confirmed the result of the infinite-range mo
that the mean-square error gives the optimal minimum va
at the temperature corresponding to the source tempera
when the ratio of hyperparameters corresponds to prior
rameters for a snapshot of theQ-Ising model forQ54 and 8.
We restored five standard images by means of the mean-
annealing and found that the restoration using our metho
better than that using theQ-Ising form in the original images
where keeping the information of original image is not s
nificant compared with eliminating the added noise
‘‘chair’’ and ‘‘girl.’’ The reason is that the effects of noise in
our method contain the effect of smoothing. However, o

ur

n

to
e

FIG. 10. Standard image ‘‘lena.’’ The left, center, and right fi
ures are the original, degraded, and restored images, respective
the composition process whenHD

t ;1.0.
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method is not efficient in images that need information of
original image strongly.

Thus, there are simply two types in natural images. On
the image that consists of a little long edges and large
faces, and those images depend on a basic and com
property of natural image strongly. Another is the image t
has many short edges and small clusters, and it is difficu
distinguish whether the original or degraded images in s
images. Therefore, not only corrupted parts but correct p
may be destroyed by the effect of smoothing in such imag
In restoration of images by means of the method of statist
mechanics, the effect of smoothing is strong compared w
keeping the information of the original image that the d
graded image contains because we use it as common p
erty of natural images. Therefore, we need some additio
information on the original image.

Furthermore, we found also that the restoration using
a-

c

In
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method is not affected by noise compared with that using
Q-Ising form. One of the reasons is due to the output, nam
the degraded data, which takes the close value to input
by the effects of noise in our method. This is the most s
nificant property of our method. We expect that the resto
tion using our method gives a further better performan
when theQ value is large. Because we could not distingui
visually the difference between close values with increas
the gray-scale level (Q value!, the effect of noise may be
suppressed visually. Accordingly, we may be able to obt
the restored image that looks closer to the original ima
intuitively.
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